Deep Unfolding of a Proximal Interior Point Algorithm for Image Restoration

C. Bertocchi¹, E. Chouzenoux², M.-C. Corbineau², J.-C. Pesquet², M. Prato¹

¹Università di Modena e Reggio Emilia, Modena, Italy ²CVN, CentraleSupélec, Université Paris-Saclay, France

8 July 2019 Applied Inverse Problems Conference, Grenoble Mini-symposium: From inverse problems to machine learning and back

Inverse problem in imaging

 $y = \mathcal{D}(H\overline{x})$

where $y \in \mathbb{R}^m$ observed image, \mathcal{D} degradation model, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Inverse problem in imaging

 $y = \mathcal{D}(H\overline{x})$

where $y \in \mathbb{R}^m$ observed image, \mathcal{D} degradation model, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

$$\underset{x \in \mathcal{C}}{\text{minimize}} \quad f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ data-fitting term, $\mathcal{R} : \mathbb{R}^n \to \mathbb{R}$ regularization function, $\lambda > 0$ regularization weight

- Incorporate prior knowledge about solution and enforce desirable constraints
- **X** No closed-form solution \rightarrow advanced algorithms
- **X** Estimation of λ and tuning of algorithm parameters \rightarrow time-consuming

Inverse problem in imaging

 $y = \mathcal{D}(H\overline{x})$

where $y \in \mathbb{R}^m$ observed image, \mathcal{D} degradation model, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

$$\underset{x \in \mathcal{C}}{\text{minimize}} \quad f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ data-fitting term, $\mathcal{R} : \mathbb{R}^n \to \mathbb{R}$ regularization function, $\lambda > 0$ regularization weight

- Incorporate prior knowledge about solution and enforce desirable constraints
- X No closed-form solution \rightarrow advanced algorithms
- **X** Estimation of λ and tuning of algorithm parameters \rightarrow time-consuming

Deep-learning methods

- Generic and very efficient architectures
- \checkmark Pre-processing step : solve optimization problem \rightarrow estimate regularization parameter
- X Black-box, no theoretical guarantees

Inverse problem in imaging

 $y = \mathcal{D}(H\overline{x})$

where $y \in \mathbb{R}^m$ observed image, \mathcal{D} degradation model, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

$$\underset{x \in \mathcal{C}}{\text{minimize}} \quad f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ data-fitting term, $\mathcal{R} : \mathbb{R}^n \to \mathbb{R}$ regularization function, $\lambda > 0$ regularization weight

- Incorporate prior knowledge about solution and enforce desirable constraints
- X No closed-form solution \rightarrow advanced algorithms
- **X** Estimation of λ and tuning of algorithm parameters \rightarrow time-consuming

Deep-learning methods

- Generic and very efficient architectures
- \checkmark Pre-processing step : solve optimization problem \rightarrow estimate regularization parameter
- X Black-box, no theoretical guarantees
- \rightarrow Combine benefits of both approaches : unfold proximal interior point algorithm

Notation and Assumptions

Proximity operator

Let $\Gamma_0(\mathbb{R}^n)$ be the set of proper lsc convex functions from \mathbb{R}^n to $\mathbb{R} \cup \{+\infty\}$. The **proximal** operator [http://proximity-operator.net/] of $g \in \Gamma_0(\mathbb{R}^n)$ at $x \in \mathbb{R}^n$ is uniquely defined as

$$\operatorname{prox}_{g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^{n}} \left(g(z) + \frac{1}{2} \|z - x\|^{2} \right).$$

Assumptions

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

We assume that $f(\cdot, y)$ and \mathcal{R} are twice-differentiable, $f(H \cdot, y) + \lambda \mathcal{R} \in \Gamma_0(\mathbb{R}^n)$ is either coercive or \mathcal{C} is bounded. The feasible set is defined as

$$\mathcal{C} = \{x \in \mathbb{R}^n \mid (\forall i \in \{1, \ldots, p\}) \ c_i(x) \ge 0\}$$

where $(\forall i \in \{1, ..., p\})$, $-c_i \in \Gamma_0(\mathbb{R}^n)$. The strict interior of the feasible set is nonempty.

- Existence of a solution to \mathcal{P}_0
- Twice-differentiability : training using gradient descent
- B : logarithmic barrier

$$(\forall x \in \mathbb{R}^n) \quad \mathcal{B}(x) = \begin{cases} -\sum_{i=1}^p \ln(c_i(x)) & \text{if } x \in \text{int}\mathcal{C} \\ +\infty & \text{otherwise.} \end{cases}$$

Logarithmic barrier method

Constrained Problem

 \mathcal{P}_0 : minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

Logarithmic barrier method

Logarithmic barrier method

 \mathcal{P}_0 is replaced by a sequence of subproblems $(\mathcal{P}_{\mu_i})_{j \in \mathbb{N}}$.

- Subproblems solved approximately for a sequence $\mu_j
 ightarrow 0$
- Main advantages : feasible iterates, superlinear convergence for NLP
- **X** Inversion of an $n \times n$ matrix at each step

Proximal interior point strategy

 $\rightarrow\,$ Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let $x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \le \gamma_k$ and $\mu_k \to 0$; for $k = 0, 1, \ldots$ do $x_{k+1} = \operatorname{prox}_{\gamma_k(f(H, y) + \lambda \mathcal{R} + \mu_k \mathcal{B})}(x_k)$ end for

× No closed-form solution for $prox_{\gamma_k(f(H,y)+\lambda\mathcal{R}+\mu_k\mathcal{B})}$

Proximal interior point strategy

 \rightarrow Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let $x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \le \gamma_k$ and $\mu_k \to 0$; for $k = 0, 1, \ldots$ do $x_{k+1} = \operatorname{prox}_{\gamma_k(f(H, y) + \lambda \mathcal{R} + \mu_k \mathcal{B})}(x_k)$ end for

X No closed-form solution for $prox_{\gamma_k(f(H,y)+\lambda \mathcal{R}+\mu_k \mathcal{B})}$

Proposed forward-backward proximal IPM.

Let
$$x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \le \gamma_k$ and $\mu_k \to 0$;
for $k = 0, 1, \dots$ do
 $x_{k+1} = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(Hx_k, y) + \lambda \nabla \mathcal{R}(x_k) \right) \right)$
end for

✓ Only requires $prox_{\gamma_k \mu_k B}$

Proximity operator of the barrier

Affine constraints
$$C = \left\{ x \in \mathbb{R}^n \mid a^\top x \leq b \right\}$$

Proposition 1

Let $\varphi : (x, \alpha) \mapsto \operatorname{prox}_{\alpha \mathcal{B}}(x)$. Then, for every $(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}^*_+$,

$$\varphi(x,\alpha) = x + \frac{b - a^\top x - \sqrt{(b - a^\top x)^2 + 4\alpha \|a\|^2}}{2\|a\|^2}a.$$

In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J^{(x)}_{arphi}(x,lpha) = \mathbb{I}_n - rac{1}{2\|m{a}\|^2} \left(1 + rac{m{a}^ op x - b}{\sqrt{(b - m{a}^ op x)^2 + 4lpha\|m{a}\|^2}}
ight)m{a}m{a}^ op$$

and

$$\nabla_{\varphi}^{(\alpha)}(x,\alpha) = \frac{-1}{\sqrt{(b-a^{\top}x)^2 + 4\alpha \|\boldsymbol{a}\|^2}}\boldsymbol{a}$$

Proof : [Chaux et al., 2007] and [Bauschke and Combettes, 2017]

Proximity operator of the barrier

Hyperslab constraints
$$C = \{x \in \mathbb{R}^n \mid b_m \leq a^\top x \leq b_M\}$$

Proposition 2

Let $\varphi : (x, \alpha) \mapsto \operatorname{prox}_{\alpha \mathcal{B}}(x)$. Then, for every $(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}^*_+$,

$$\varphi(x, \alpha) = x + \frac{\kappa(x, \alpha) - \mathbf{a}^\top x}{\|\mathbf{a}\|^2} \mathbf{a},$$

where $\kappa(x, \alpha)$ is the unique solution in $]b_m, b_M[$, of the following cubic equation,

 $0 = z^{3} - (b_{m} + b_{M} + a^{\top}x)z^{2} + (b_{m}b_{M} + a^{\top}x(b_{m} + b_{M}) - 2\alpha ||a||^{2})z - b_{m}b_{M}a^{\top}x + \alpha(b_{m} + b_{M})||a||^{2}.$ In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J^{(\mathrm{x})}_{arphi}(\mathrm{x},lpha) = \mathbb{I}_n - rac{1}{\| oldsymbol{a} \|^2} \left(rac{(b_M - \kappa(\mathrm{x},lpha))(b_m - \kappa(\mathrm{x},lpha))}{\eta(\mathrm{x},lpha)} - 1
ight)$$
aa T

and

$$abla_{arphi}^{(lpha)}(x,lpha)=rac{2\kappa(x,lpha)-b_m-b_M}{\eta(x,lpha)}$$
a,

where $\eta(x, \alpha) = (b_M - \kappa(x, \alpha))(b_m - \kappa(x, \alpha)) - (b_m + b_M - 2\kappa(x, \alpha))(\kappa(x, \alpha) - a^\top x) - 2\alpha \|a\|^2$.

Proof : [Chaux et al., 2007], [Bauschke and Combettes, 2017] and implicit function theorem

Proximity operator of the barrier

Bound constraints

Proximity operator of the barrier

Bounded
$$\ell_2$$
-norm $C = \left\{ x \in \mathbb{R}^n \mid ||x - c||^2 \le \rho \right\}$

Proposition 3

Let $\varphi : (x, \alpha) \mapsto \operatorname{prox}_{\alpha \mathcal{B}}(x)$. Then, for every $(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}^*_+$,

$$\varphi(x, \alpha) = c + \frac{\rho - \kappa(x, \alpha)^2}{\rho - \kappa(x, \alpha)^2 + 2\alpha}(x - c),$$

where $\kappa(x, \alpha)$ is the unique solution in $]0, \sqrt{\rho}[$, of the following cubic equation,

$$0 = z^{3} - ||x - c||z^{2} - (\rho + 2\alpha)z + \rho||x - c||.$$

In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J_{\varphi}^{(x)}(x,\alpha) = \frac{\rho - \|\varphi(x,\alpha) - c\|^2}{\rho - \|\varphi(x,\alpha) - c\|^2 + 2\alpha} M(x,\alpha)$$

and

$$\nabla_{\varphi}^{(\alpha)}(x,\alpha) = \frac{-2}{\rho - \|\varphi(x,\alpha) - c\|^2 + 2\alpha} M(x,\alpha)(\varphi(x,\alpha) - c),$$

where

$$M(x,\alpha) = \mathbb{I}_n - \frac{2(x-\varphi(x,\alpha))(\varphi(x,\alpha)-c)^\top}{\rho-3\|\varphi(x,\alpha)-c\|^2+2\alpha+2(\varphi(x,\alpha)-c)^\top(x-c)}.$$

Proof : [Bauschke and Combettes, 2017], Sherma-Morrison lemma and implicit function theorem

Proximity operator of the barrier

Bounded $\ell_2\text{-norm}$

$$\mathcal{C} = \left\{ x \in \mathbb{R}^2 \mid \|x\|^2 \le 0.7 \right\}$$

Proposed strategy

Forward-backward proximal IPM.

Let
$$x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \le \gamma_k$ and $\mu_k \to 0$;
for $k = 0, 1, \dots$ do
 $x_{k+1} = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(Hx_k, y) + \lambda \nabla \mathcal{R}(x_k) \right) \right)$
end for

- Efficient algorithm for constrained optimization
- × Setting of the parameters $(\mu_k, \gamma_k)_{k \in \mathbb{N}}$?
- $\pmb{\times}$ Finding the regularization parameter λ so as to optimize the visual quality of the solution ?
- $\rightarrow~$ Unfold proximal IP algorithm over K iterations, untie $\gamma,~\mu$ and λ across network

$$\mathcal{A}(x_k, \mu_k, \gamma_k, \lambda_k) = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(Hx_k, y) + \lambda_k \nabla \mathcal{R}(x_k) \right) \right)$$

Proposed architecture

iRestNet architecture

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Hidden structures

• $(\mathcal{L}_{k}^{(\gamma)})_{0 \leq k \leq K-1}$: estimate stepsize, positive \rightarrow Softplus (smooth approx ReLU)

$$\gamma_k = \mathcal{L}_k^{(\gamma)} = \text{Softplus}(a_k)$$

 \rightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Hidden structures

• $(\mathcal{L}_{k}^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize • $(\mathcal{L}_{k}^{(\nu)})_{0 \le k < K-1}$: estimate barrier parameter

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

input : $x_0 = y$ blurred imagination

•
$$(\mathcal{L}_k^{(\gamma)})_{0 \le k \le K-1}$$
 : estimate stepsize

- $(\mathcal{L}_{k}^{(\mu)})_{0 \le k \le K-1}$: estimate barrier parameter
- $(\mathcal{L}_k^{(\lambda)})_{0 \le k \le K-1}$: estimate regularization parameter \rightarrow image statistics, noise level

Proposed architecture

iRestNet architecture

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Input : $x_0 = y$ blurred image^{\mathcal{L}_0}

•
$$(\mathcal{L}_{k}^{(\gamma)})_{0 \leq k \leq K-1}$$
 : estimate stepsize

- $(\mathcal{L}_{k}^{(\mu)})_{0 \leq k \leq K-1}$: estimate barrier parameter
- $(\mathcal{L}_{k}^{(\lambda)})_{0 \leq k \leq K-1}$: estimate regularization parameter

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Input : $x_0 = y$ blurred image^{\mathcal{L}_0}

•
$$(\mathcal{L}_{k}^{(\gamma)})_{0 \leq k \leq K-1}$$
 : estimate stepsize

- $(\mathcal{L}_{k}^{(\mu)})_{0 \leq k \leq K-1}$: estimate barrier parameter
- $(\mathcal{L}_{k}^{(\lambda)})_{0 \le k \le K-1}$: estimate regularization parameter
- \blacksquare $\mathcal{L}_{\rm pp}$: post-processing layer \rightarrow e.g. removes small artifacts

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Input : $x_0 = y$ blurred image^{\mathcal{L}_0}

Hidden structures

•
$$(\mathcal{L}_{k}^{(\gamma)})_{0 \leq k \leq K-1}$$
 : estimate stepsize

- $(\mathcal{L}_{k}^{(\mu)})_{0 \leq k \leq K-1}$: estimate barrier parameter
- $(\mathcal{L}_{k}^{(\lambda)})_{0 \leq k \leq K-1}$: estimate regularization parameter
- \mathcal{L}_{pp} : post-processing layer \rightarrow e.g. removes small artifacts

Training Gradient descent and backpropagation (∇A with Propositions 1-3)

Network stability

What about the network performance when the input is perturbed?

Network stability

What about the network performance when the input is perturbed?

- Deep learning : lack of theoretical guarantees, e.g. AlexNet [Szegedy et al., 2013]
- Applications with high risk and legal responsibility (medical image processing, defense, etc...) \rightarrow need guarantees
- Recent work of [Combettes and Pesquet, 2018]
- Robustness addressed with the framework of averaged operators

Averaged operators

Definition – Nonexpansiveness

Let $T : \mathbb{R}^n \to \mathbb{R}^n$. Then, T is nonexpansive if it is 1-Lipschitz continuous, i.e.,

$$(\forall x \in \mathbb{R}^n)(\forall y \in \mathbb{R}^n) \quad ||T(x) - T(y)|| \le ||x - y||.$$

Definition – α -averaged operator

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be nonexpansive, and let $\alpha \in [0, 1]$. Then, T is α -averaged if there exists a nonexpansive operator $R : \mathbb{R}^n \to \mathbb{R}^n$ such that $T = (1 - \alpha)I_n + \alpha R$.

Averaged operators

Definition – Nonexpansiveness

Let $T : \mathbb{R}^n \to \mathbb{R}^n$. Then, T is nonexpansive if it is 1-Lipschitz continuous, i.e.,

$$(\forall x \in \mathbb{R}^n)(\forall y \in \mathbb{R}^n) \quad ||T(x) - T(y)|| \le ||x - y||.$$

Definition – α -averaged operator

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be nonexpansive, and let $\alpha \in [0, 1]$. Then, T is α -averaged if there exists a nonexpansive operator $R : \mathbb{R}^n \to \mathbb{R}^n$ such that $T = (1 - \alpha)I_n + \alpha R$.

- If T is averaged, then it is nonexpansive.
- Let $\alpha \in]0,1]$. T is α -averaged if and only if for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$,

$$\|T(x) - T(y)\|^2 \le \|x - y\|^2 - \frac{1 - \alpha}{\alpha} \|(I_n - T)(x) - (I_n - T)(y)\|^2.$$

 \Rightarrow Bound on the output variation when input is perturbed.

Relation to generic deep neural networks

Feedforward architecture $R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$

- $(R_k)_{0 \le k \le K-1}$ non linear activation functions
- (W_k)_{0≤k≤K-1} weight operators
- (b_k)_{0≤k≤K−1} bias parameters

 \rightarrow iRestNet shares same structure

Relation to generic deep neural networks

Feedforward architecture
$$R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$$

Quadratic problem minimize $\frac{1}{2} ||Hx - y||^2 + \frac{\lambda}{2} ||Dx||^2$

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathrm{prox}_{\gamma_k \mu_k \mathcal{B}} (\mathbf{x}_k - \gamma_k (\mathbf{H}^\top (\mathbf{H} \mathbf{x}_k - \mathbf{y}) + \lambda_k D^\top D \mathbf{x}_k)) \\ &= \mathrm{prox}_{\gamma_k \mu_k \mathcal{B}} \left([\mathbb{I}_n - \gamma_k (\mathbf{H}^\top \mathbf{H} + \lambda_k D^\top D)] \mathbf{x}_k + \gamma_k \mathbf{H}^\top \mathbf{y} \right) \\ &= R_k (W_k \mathbf{x}_k + b_k) \end{aligned}$$

•
$$W_k = \mathbb{I}_n - \gamma_k (H^\top H + \lambda D^\top D)$$
 weight operator

- $b_k = \gamma_k H^\top y$ bias parameter
- $\blacksquare R_k = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}}$

Standard activation functions (ReLU, Sigmoid, etc...) are derived from a proximity operator [Combettes and Pesquet, 2018].

 $\rightarrow R_k$ specific activation function

Proposed architecture

Network stability result

Assumptions

Consider the quadratic problem, assume that $H^{\top}H$ and $D^{\top}D$ are diagonalizable in the same basis \mathcal{P} . For every $p \in \{1, \ldots, n\}$ let $\beta_{H}^{(p)}$ and $\beta_{D}^{(p)}$ denote the p^{th} eigenvalue of $H^{\top}H$ and $D^{\top}D$ in \mathcal{P} , resp. Let β_{+} and β_{-} be defined by $\beta_{+} = \max_{1 \le p \le n} \prod_{k=0}^{K-1} \left(1 - \gamma_{k} \left(\beta_{H}^{(p)} + \lambda_{k}\beta_{D}^{(p)}\right)\right)$ and $\beta_{-} = \min_{1 \le p \le n} \prod_{k=0}^{K-1} \left(1 - \gamma_{k} \left(\beta_{H}^{(p)} + \lambda_{k}\beta_{D}^{(p)}\right)\right)$. Let $\theta_{-1} = 1$ and for all $k \in \{0, \ldots, K-1\}$, $\theta_{k} = \sum_{l=0}^{k} \theta_{l-1} \max_{1 \le q_{l} \le n} \left| \left(1 - \gamma_{k} \left(\beta_{H}^{(q_{l})} + \lambda_{k}\beta_{D}^{(q_{l})}\right)\right) \dots \left(1 - \gamma_{l} \left(\beta_{H}^{(q_{l})} + \lambda_{l}\beta_{D}^{(q_{l})}\right)\right) \right|.$

Proposed architecture

Network stability result

Assumptions

Consider the quadratic problem, assume that $H^{\top}H$ and $D^{\top}D$ are diagonalizable in the same basis \mathcal{P} . For every $p \in \{1, \ldots, n\}$ let $\beta_{H}^{(p)}$ and $\beta_{D}^{(p)}$ denote the p^{th} eigenvalue of $H^{\top}H$ and $D^{\top}D$ in \mathcal{P} , resp. Let β_{+} and β_{-} be defined by $\beta_{+} = \max_{1 \leq p \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_{k} \left(\beta_{H}^{(p)} + \lambda_{k}\beta_{D}^{(p)}\right)\right)$ and $\beta_{-} = \min_{1 \leq p \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_{k} \left(\beta_{H}^{(p)} + \lambda_{k}\beta_{D}^{(p)}\right)\right)$. Let $\theta_{-1} = 1$ and for all $k \in \{0, \ldots, K-1\}$, $\theta_{k} = \sum_{l=0}^{k} \theta_{l-1} \max_{1 \leq q_{l} \leq n} \left| \left(1 - \gamma_{k} \left(\beta_{H}^{(q_{l})} + \lambda_{k}\beta_{D}^{(q_{l})}\right)\right) \dots \left(1 - \gamma_{l} \left(\beta_{H}^{(q_{l})} + \lambda_{l}\beta_{D}^{(q_{l})}\right)\right) \right|.$

Theorem $1 - \alpha$ -averaged operator

Let $\alpha \in [1/2, 1]$. If one of the following conditions is satisfied (i) $\beta_+ + \beta_- \leq 0$ and $\theta_{K-1} \leq 2^{K-1}(2\alpha - 1)$; (ii) $0 \leq \beta_+ + \beta_- \leq 2^{K+1}(1 - \alpha)$ and $2\theta_{K-1} \leq \beta_+ + \beta_- + 2^K(2\alpha - 1)$; (iii) $2^{K+1}(1 - \alpha) \leq \beta_+ + \beta_-$ and $\theta_{K-1} \leq 2^{K-1}$, then the operator $R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$ is α -averaged.

 \implies Bound on the output variation when input is perturbed.

Image deblurring

$$y = H\overline{x} + \omega$$

- $H \in \mathbb{R}^n \times \mathbb{R}^n$: circular convolution with known blur
- $\omega \in \mathbb{R}^n$: additive white Gaussian noise with standard deviation σ
- $y \in \mathbb{R}^n$, $\overline{x} \in \mathbb{R}^n$: RGB images

Variational formulation

$$\underset{x \in \mathcal{C}}{\text{minimize}} \quad \frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|^2 + \lambda \sum_{i=1}^n \sqrt{\frac{(D_{\text{h}} x)_i^2 + (D_{\text{v}} x)_i^2}{\delta^2} + 1}$$

- $\blacksquare \ \mathcal{C} = \{ x \in \mathbb{R}^n \mid (\forall i \in \{1, \dots, n\}) \ x_{\min} \le x_i \le x_{\max} \}$
- δ : smoothing parameter, $\delta = 0.01$ for iRestNet
- $D_{
 m h} \in \mathbb{R}^{n imes n}$, $D_{
 m v} \in \mathbb{R}^{n imes n}$: horizontal and vertical spatial gradient operators

Network characteristics

Number of layers : K = 40

Proposed architecture

Network stab

Numerical experiments

Network characteristics

- Number of layers : K = 40
- Estimation of regularization parameter

$$\lambda_{k} = \mathcal{L}_{k}^{(\lambda)}(x_{k}) = \frac{\widehat{\sigma}(y) \times \text{Softplus}(\mathbf{b}_{k})}{\eta(x_{k}) + \text{Softplus}(\mathbf{c}_{k})}$$

- $\eta(x_k)$: standard deviation of $[(D_h x_k)^{\top} (D_v x_k)^{\top}]^{\top}$
- Estimation of noise level [Ramadhan et al.,2017], $\widehat{\sigma}(y) = \text{median}(|W_{Hy}|)/0.6745$
- $|W_H y|$: vector gathering the absolute value of the diagonal coefficients of the first level Haar wavelet decomposition of the blurred image
 - \rightarrow iRestNet does not require knowledge of noise level

Proposed architecture

Network stab

Numerical experiments

Network characteristics

- Number of layers : *K* = 40
- Estimation of regularization parameter

$$\lambda_{k} = \mathcal{L}_{k}^{(\lambda)}(x_{k}) = \frac{\widehat{\sigma}(y) \times \text{Softplus}(\mathbf{b}_{k})}{\eta(x_{k}) + \text{Softplus}(\mathbf{c}_{k})}$$

- $\eta(x_k)$: standard deviation of $[(D_h x_k)^{\top} (D_v x_k)^{\top}]^{\top}$
- Estimation of noise level [Ramadhan et al.,2017], $\widehat{\sigma}(y) = \text{median}(|W_{Hy}|)/0.6745$
- $|W_H y|$: vector gathering the absolute value of the diagonal coefficients of the first level Haar wavelet decomposition of the blurred image
 - \rightarrow iRestNet does not require knowledge of noise level
- Post-processing L_{pp} [Zhang et al.,2017]

Dataset

- Training set : 200 RGB images from BSD500 + 1000 images from COCO
- Validation set : 100 validation images from BSD500
- Test sets : 200 test images from BSD500, Flickr30 test set (30 images)

Dataset

- Training set : 200 RGB images from BSD500 + 1000 images from COCO
- Validation set : 100 validation images from BSD500
- Test sets : 200 test images from BSD500, Flickr30 test set (30 images)

Test configurations

- GaussianA : Gaussian kernel with std=1.6, σ = 0.008
- GaussianB : Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$
- GaussianC : Gaussian kernel with std=3, $\sigma = 0.04$
- Motion : motion kernel from [Levin et al.,2009] $\sigma = 0.01$
- Square : 7 imes 7 square kernel, $\sigma = 0.01$

Dataset

- Training set : 200 RGB images from BSD500 + 1000 images from COCO
- Validation set : 100 validation images from BSD500
- Test sets : 200 test images from BSD500, Flickr30 test set (30 images)

Test configurations

- GaussianA : Gaussian kernel with std=1.6, $\sigma = 0.008$
- GaussianB : Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$
- GaussianC : Gaussian kernel with std=3, $\sigma = 0.04$
- Motion : motion kernel from [Levin et al.,2009] σ = 0.01
- Square : 7 \times 7 square kernel, $\sigma = 0.01$

Training

- Loss : Structural SImilarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
- $\blacksquare \ \mathcal{L}_0, \ \dots, \ \mathcal{L}_{29} \text{ trained individually, } \ \mathcal{L}_{\mathrm{pp}} \circ \mathcal{L}_{39} \circ \dots \circ \mathcal{L}_{30} \text{ trained end-to-end} \rightarrow \text{low memory}$
- Implemented with Pytorch using a GPU, ~3-4 days per training

Dataset

- Training set : 200 RGB images from BSD500 + 1000 images from COCO
- Validation set : 100 validation images from BSD500
- Test sets : 200 test images from BSD500, Flickr30 test set (30 images)

Test configurations

- GaussianA : Gaussian kernel with std=1.6, $\sigma = 0.008$
- GaussianB : Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$
- GaussianC : Gaussian kernel with std=3, $\sigma = 0.04$
- Motion : motion kernel from [Levin et al.,2009] $\sigma = 0.01$
- Square : 7 \times 7 square kernel, $\sigma = 0.01$

Training

- Loss : Structural SImilarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
- $\blacksquare \ \mathcal{L}_0, \ \dots, \ \mathcal{L}_{29} \text{ trained individually, } \ \mathcal{L}_{\mathrm{pp}} \circ \mathcal{L}_{39} \circ \dots \circ \mathcal{L}_{30} \text{ trained end-to-end} \rightarrow \text{low memory}$
- Implemented with Pytorch using a GPU, ~3-4 days per training

Competitors

- VAR : solution to \mathcal{P}_0 with projected gradient algorithm, (λ, δ) leading to best SSIM
- EPLL [Zoran and Weiss, 2011], MLP [Schuler et al., 2013], IRCNN [Zhang et al., 2017] (require noise level), PDHG [Meinhardt et al., 2017], FCNN [J. Zhang et al., 2017]

Results

- ✓ Higher average SSIM than competitors
- ✓ Higher SSIM on almost all images

	GaussianA	GaussianB	GaussianC	Motion	Square
Blurred	0.676	0.526	0.326	0.549	0.544
VAR	0.804	0.723	0.587	0.829	0.756
EPLL [Zoran and Weiss, 2011]	0.800	0.708	0.565	0.839	0.755
MLP [Schuler et al., 2016]	0.821	0.734	0.608	n/a	n/a
PDHG [Meinhardt et al., 2017]	0.796	0.716	0.563	n/a	n/a
IRCNN [K. Zhang et al., 2017]	0.841	0.768	0.619	0.907	0.834
FCNN [J. Zhang et al., 2017]	n/a	n/a	n/a	0.847	n/a
iRestNet	0.853	0.787	0.641	0.910	0.840

 TABLE – SSIM results on the BSD500 test set.

- $\checkmark~$ Short execution time : $\sim~1.4~{\rm sec}$ per image
- ✓ Similar performance on a different test set

	GaussianA	GaussianB	GaussianC	Motion	Square
Blurred	0.723	0.545	0.355	0.590	0.579
VAR	0.857	0.776	0.639	0.869	0.818
EPLL [Zoran and Weiss, 2011]	0.860	0.770	0.616	0.887	0.827
MLP [Schuler et al., 2016]	0.874	0.798	0.668	n/a	n/a
PDHG [Meinhardt et al., 2017]	0.853	0.781	0.623	n/a	n/a
IRCNN [K. Zhang et al., 2017]	0.885	0.819	0.676	0.930	0.886
FCNN [J. Zhang et al., 2017]	n/a	n/a	n/a	0.890	n/a
iRestNet	0.892	0.833	0.696	0.930	0.886

 TABLE – SSIM results on the Flickr30 test set.

Visual results

$\checkmark\,$ Better contrast and more details

Proximity operator of the barrie

roposed architecture

Network stabili

Numerical experiments

Visual results

Ground-truth Blurred : 0.344 VAR : 0.622 EPLL : 0.553 IRCNN : 0.685 iRestNet : 0.713 FIGURE – Visual results and SSIM obtained on one image from the BSD500 test set degraded with Square.

Ground-truth

Blurred : 0.576

VAR : 0.844

EPLL : 0.849

IRCNN : 0.906 FCNN : 0.856 iRestNet : 0.909

FIGURE - Visual results and SSIM obtained on one image from teh Flickr30 test set degraded with Motion.

Conclusion

- Novel architecture based on an unfolded proximal interior point algorithm
- Allows to apply hard constraints on the image
- Expression and gradient of the proximity operator of the barrier
- \rightarrow Different application (classification, ...)
- $\rightarrow\,$ When degradation is unkown : blind or semi-blind deconvolution

Related publications

iRestNet

C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, M. Prato, J.-C. Pesquet

Deep unfolding of a proximal interior point method for image restoration https://arxiv.org/abs/1812.04276

Network stability

P. L. Combettes and J.-C. Pesquet.

Deep neural network structures solving variational inequalities

https://arxiv.org/abs/1808.07526.

Proximal interior point methods

F.

M.-C. Corbineau, E. Chouzenoux and J.-C. Pesquet.

PIPA : a new proximal interior point algorithm for large-scale convex optimization. Proceedings of the 20th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018.

M.-C. Corbineau, E. Chouzenoux and J.-C. Pesquet.

Geometry-texture decomposition/reconstruction using a proximal interior point algorithm Proceedings of the 10th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), 2018.

E. Chouzenoux, M.-C. Corbineau and J.-C. Pesquet.

A proximal interior point algorithm with applications to image processing

HAL preprint hal-02120005, 2019.

Thank you!