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Motivation

Inverse problem in imaging
y = D(Hx)

where y ∈ Rm observed image, D degradation model, H ∈ Rm×n linear observation model, x ∈ Rn original image

Variational methods
minimize

x∈C
f (Hx , y) + λR(x)

where f : Rm × Rm → R data-fitting term, R : Rn → R regularization function, λ > 0 regularization weight

3 Incorporate prior knowledge about solution and enforce desirable constraints
7 No closed-form solution → advanced algorithms
7 Estimation of λ and tuning of algorithm parameters → time-consuming

Deep-learning methods

3 Generic and very efficient architectures
7 Pre-processing step : solve optimization problem → estimate regularization parameter
7 Black-box, no theoretical guarantees

→ Combine benefits of both approaches : unfold proximal interior point algorithm
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Notation and Assumptions

Proximity operator

Let Γ0(Rn) be the set of proper lsc convex functions from Rn to R ∪ {+∞}. The proximal
operator [http://proximity-operator.net/] of g ∈ Γ0(Rn) at x ∈ Rn is uniquely defined as

proxg (x) = argmin
z∈Rn

(
g(z) +

1
2
‖z − x‖2

)
.

Assumptions

P0 : minimize
x∈C

f (Hx , y) + λR(x)

We assume that f (·, y) and R are twice-differentiable, f (H·, y) + λR ∈ Γ0(Rn) is either coercive
or C is bounded. The feasible set is defined as

C = {x ∈ Rn | (∀i ∈ {1, . . . , p}) ci (x) ≥ 0}

where (∀i ∈ {1, . . . , p}), −ci ∈ Γ0(Rn). The strict interior of the feasible set is nonempty.

Existence of a solution to P0

Twice-differentiability : training using gradient descent

B : logarithmic barrier

(∀x ∈ Rn) B(x) =
{
−
∑p

i=1
ln(ci (x)) if x ∈ intC

+∞ otherwise.
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Logarithmic barrier method

Constrained Problem P0 : minimize
x∈C

f (Hx , y) + λR(x)

⇓
Unconstrained Subproblem Pµ : minimize

x∈Rn
f (Hx , y) + λR(x) + µB(x)

where µ > 0 is the barrier parameter.

P0 is replaced by a sequence of subproblems (Pµj )j∈N.
Subproblems solved approximately for a sequence µj → 0
Main advantages : feasible iterates, superlinear convergence for NLP

7 Inversion of an n × n matrix at each step
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Proximal interior point strategy

→ Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let x0 ∈ intC, γ > 0, (∀k ∈ N) γ ≤ γk and µk → 0 ;
for k = 0, 1, . . . do

xk+1 = proxγk (f (H·,y)+λR+µkB) (xk )
end for

7 No closed-form solution for proxγk (f (H·,y)+λR+µkB)

Proposed forward–backward proximal IPM.
Let x0 ∈ intC, γ > 0, (∀k ∈ N) γ ≤ γk and µk → 0 ;
for k = 0, 1, . . . do

xk+1 = proxγkµkB
(

xk − γk
(

H>∇1f (Hxk , y) + λ∇R(xk )
))

end for

3 Only requires proxγkµkB
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Proximity operator of the barrier

Affine constraints C =
{

x ∈ Rn | a>x ≤ b
}

Proposition 1

Let ϕ : (x , α) 7→ proxαB(x). Then, for every (x , α) ∈ Rn × R∗+,

ϕ(x , α) = x +
b − a>x −

√
(b − a>x)2 + 4α‖a‖2

2‖a‖2
a.

In addition, the Jacobian matrix of ϕ wrt x and the gradient of ϕ wrt α are given by

J(x)
ϕ (x , α) = In −

1
2‖a‖2

(
1 +

a>x − b√
(b − a>x)2 + 4α‖a‖2

)
aa>

and
∇(α)
ϕ (x , α) =

−1√
(b − a>x)2 + 4α‖a‖2

a

Proof : [Chaux et al.,2007] and [Bauschke and Combettes,2017]
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Proximity operator of the barrier

Hyperslab constraints C =
{

x ∈ Rn | bm ≤ a>x ≤ bM
}

Proposition 2

Let ϕ : (x , α) 7→ proxαB(x). Then, for every (x , α) ∈ Rn × R∗+,

ϕ(x , α) = x +
κ(x , α)− a>x

‖a‖2
a,

where κ(x , α) is the unique solution in ]bm, bM [, of the following cubic equation,

0 = z3−(bm +bM +a>x)z2 +(bmbM +a>x(bm +bM )−2α‖a‖2)z−bmbM a>x +α(bm +bM )‖a‖2.

In addition, the Jacobian matrix of ϕ wrt x and the gradient of ϕ wrt α are given by

J(x)
ϕ (x , α) = In −

1
‖a‖2

(
(bM − κ(x , α))(bm − κ(x , α))

η(x , α)
− 1
)

aa>

and
∇(α)
ϕ (x , α) =

2κ(x , α)− bm − bM

η(x , α)
a,

where η(x, α) = (bM − κ(x, α))(bm − κ(x, α))− (bm + bM − 2κ(x, α))(κ(x, α)− a>x)− 2α‖a‖2.

Proof : [Chaux et al.,2007], [Bauschke and Combettes,2017] and implicit function theorem
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Proximity operator of the barrier

Bound constraints C = {x ∈ R | 0 ≤ x ≤ 1}
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Proximity operator of the barrier

Bounded `2-norm C =
{

x ∈ Rn | ‖x − c‖2 ≤ ρ
}

Proposition 3

Let ϕ : (x , α) 7→ proxαB(x). Then, for every (x , α) ∈ Rn × R∗+,

ϕ(x , α) = c +
ρ− κ(x , α)2

ρ− κ(x , α)2 + 2α
(x − c),

where κ(x , α) is the unique solution in ]0,√ρ[, of the following cubic equation,

0 = z3 − ‖x − c‖z2 − (ρ + 2α)z + ρ‖x − c‖.

In addition, the Jacobian matrix of ϕ wrt x and the gradient of ϕ wrt α are given by

J(x)
ϕ (x , α) =

ρ− ‖ϕ(x , α)− c‖2

ρ− ‖ϕ(x , α)− c‖2 + 2α
M(x , α)

and
∇(α)
ϕ (x , α) =

−2
ρ− ‖ϕ(x , α)− c‖2 + 2α

M(x , α)(ϕ(x , α)− c),

where
M(x , α) = In −

2(x − ϕ(x , α))(ϕ(x , α)− c)>

ρ− 3‖ϕ(x , α)− c‖2 + 2α + 2(ϕ(x , α)− c)>(x − c)
.

Proof : [Bauschke and Combettes,2017], Sherma-Morrison lemma and implicit function theorem
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Proximity operator of the barrier

Bounded `2-norm C =
{

x ∈ R2 | ‖x‖2 ≤ 0.7
}
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Proposed strategy

Forward–backward proximal IPM.
Let x0 ∈ intC, γ > 0, (∀k ∈ N) γ ≤ γk and µk → 0 ;
for k = 0, 1, . . . do

xk+1 = proxγkµkB
(

xk − γk
(

H>∇1f (Hxk , y) + λ∇R(xk )
))

end for

3 Efficient algorithm for constrained optimization
7 Setting of the parameters (µk , γk )k∈N ?
7 Finding the regularization parameter λ so as to optimize the visual quality of the

solution ?

→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network

A(xk , µk , γk , λk ) = proxγkµkB
(

xk − γk
(

H>∇1f (Hxk , y) + λk∇R(xk )
))
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iRestNet architecture

−→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network
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(L(γ)
k )0≤k≤K−1 : estimate stepsize, positive → Softplus (smooth approx ReLU)

γk = L(γ)
k = Softplus(ak )
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−→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network

Input	
RGB	image

= ��0


(�)

0


(�)

0


(�)

0

�0

�0

�0



0

��

��

Output	
RGB	image

�1 
(�)

1


(�)

1


(�)

1

�1

�1

�1



1

�2

Input : x0 = y blurred image

Hidden structures

(L(γ)
k )0≤k≤K−1 : estimate stepsize

(L(µ)
k )0≤k≤K−1 : estimate barrier parameter

AvgPool	4x4	
+	SoftPlus

AvgPool	4x4	
+	SoftPlus

SoftPlus

Fully	connected	layer

25
6 256

3

64 64

16 16

16x16 16x16

1
��

��

5
5

5

5

Bertocchi, Chouzenoux, Corbineau, Pesquet, Prato Deep Unfoldinf of a Proximal IPA for Image Restoration AIP, 2019 12 / 26



Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

iRestNet architecture

−→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network
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Hidden structures

(L(γ)
k )0≤k≤K−1 : estimate stepsize

(L(µ)
k )0≤k≤K−1 : estimate barrier parameter

(L(λ)
k )0≤k≤K−1 : estimate regularization parameter → image statistics, noise level

Bertocchi, Chouzenoux, Corbineau, Pesquet, Prato Deep Unfoldinf of a Proximal IPA for Image Restoration AIP, 2019 12 / 26



Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

iRestNet architecture

−→ Unfold proximal IP algorithm over K iterations, untie γ, µ and λ across network

Input	
RGB	image

= ��0


(�)

0


(�)

0


(�)

0

�0

�0

�0



0

��

��

Output	
RGB	image

�1 
(�)

1


(�)

1


(�)

1

�1

�1

�1



1

�2

Input : x0 = y blurred image

Hidden structures

(L(γ)
k )0≤k≤K−1 : estimate stepsize

(L(µ)
k )0≤k≤K−1 : estimate barrier parameter

(L(λ)
k )0≤k≤K−1 : estimate regularization parameter

A(xk , µk , γk , λk) = proxγk µk B
(

xk − γk
(

H>∇1f (Hxk , y) + λk∇R(xk)
))

Bertocchi, Chouzenoux, Corbineau, Pesquet, Prato Deep Unfoldinf of a Proximal IPA for Image Restoration AIP, 2019 12 / 26



Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

iRestNet architecture
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Lpp : post-processing layer → e.g. removes small artifacts
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Training Gradient descent and backpropagation (∇A with Propositions 1-3)
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Network stability

What about the network performance when the input is perturbed ?
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Network stability

What about the network performance when the input is perturbed ?

Deep learning : lack of theoretical guarantees, e.g. AlexNet [Szegedy et al., 2013]
Applications with high risk and legal responsibility (medical image processing,
defense, etc...) → need guarantees

Recent work of [Combettes and Pesquet, 2018]
Robustness addressed with the framework of averaged operators
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Averaged operators

Definition – Nonexpansiveness
Let T : Rn → Rn. Then, T is nonexpansive if it is 1-Lipschitz continuous, i.e.,

(∀x ∈ Rn)(∀y ∈ Rn) ‖T (x)− T (y)‖ ≤ ‖x − y‖.

Definition – α-averaged operator

Let T : Rn → Rn be nonexpansive, and let α ∈ [0, 1]. Then, T is α-averaged if there
exists a nonexpansive operator R : Rn → Rn such that T = (1− α)In + αR.

If T is averaged, then it is nonexpansive.
Let α ∈]0, 1]. T is α-averaged if and only if for every x ∈ Rn and y ∈ Rn,

‖T (x)− T (y)‖2 ≤ ‖x − y‖2 −
1− α
α
‖(In − T )(x)− (In − T )(y)‖2.

=⇒ Bound on the output variation when input is perturbed.
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exists a nonexpansive operator R : Rn → Rn such that T = (1− α)In + αR.

If T is averaged, then it is nonexpansive.
Let α ∈]0, 1]. T is α-averaged if and only if for every x ∈ Rn and y ∈ Rn,

‖T (x)− T (y)‖2 ≤ ‖x − y‖2 −
1− α
α
‖(In − T )(x)− (In − T )(y)‖2.

=⇒ Bound on the output variation when input is perturbed.
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Relation to generic deep neural networks

Feedforward architecture RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦ R0 ◦ (W0 ·+b0)
(Rk )0≤k≤K−1 non linear activation functions
(Wk )0≤k≤K−1 weight operators
(bk )0≤k≤K−1 bias parameters

→ iRestNet shares same structure
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Relation to generic deep neural networks

Feedforward architecture RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦ R0 ◦ (W0 ·+b0)

Quadratic problem minimize
x∈C

1
2‖Hx − y‖2 + λ

2 ‖Dx‖2

xk+1 = proxγkµkB(xk − γk (H>(Hxk − y) + λkD>Dxk ))

= proxγkµkB
(

[In − γk (H>H + λkD>D)]xk + γkH>y
)

= Rk (Wkxk + bk )

Wk = In − γk (H>H + λD>D) weight operator
bk = γkH>y bias parameter
Rk = proxγkµkB

Standard activation functions (ReLU, Sigmoid, etc. . .) are derived from a proximity operator
[Combettes and Pesquet, 2018].

→ Rk specific activation function
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Network stability result

Assumptions

Consider the quadratic problem, assume that H>H and D>D are diagonalizable in the same
basis P. For every p ∈ {1, . . . , n} let β(p)

H and β(p)
D denote the pth eigenvalue of H>H and D>D

in P, resp. Let β+ and β− be defined by

β+ = max
1≤p≤n

K−1∏
k=0

(
1− γk

(
β

(p)
H + λkβ

(p)
D

))
and β− = min

1≤p≤n

K−1∏
k=0

(
1− γk

(
β

(p)
H + λkβ

(p)
D

))
.

Let θ−1 = 1 and for all k ∈ {0, . . . ,K − 1},

θk =
k∑

l=0

θl−1 max
1≤ql≤n

∣∣(1− γk
(
β

(ql )
H + λkβ

(ql )
D

))
. . .
(
1− γl

(
β

(ql )
H + λlβ

(ql )
D

))∣∣.

Theorem 1 – α-averaged operator

Let α ∈ [1/2, 1]. If one of the following conditions is satisfied
(i) β+ + β− ≤ 0 and θK−1 ≤ 2K−1(2α− 1) ;
(ii) 0 ≤ β+ + β− ≤ 2K+1(1− α) and 2θK−1 ≤ β+ + β− + 2K (2α− 1) ;
(iii) 2K+1(1− α) ≤ β+ + β− and θK−1 ≤ 2K−1,
then the operator RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦ R0 ◦ (W0 ·+b0) is α-averaged.

=⇒ Bound on the output variation when input is perturbed.
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Numerical experiments

Image deblurring y = Hx + ω

H ∈ Rn × Rn : circular convolution with known blur
ω ∈ Rn : additive white Gaussian noise with standard deviation σ
y ∈ Rn, x ∈ Rn : RGB images

Variational formulation

minimize
x∈C

1
2
‖Hx − y‖2 + λ

n∑
i=1

√
(Dhx)2i + (Dvx)2i

δ2
+ 1

C = {x ∈ Rn | (∀i ∈ {1, . . . , n}) xmin ≤ xi ≤ xmax}
δ : smoothing parameter, δ = 0.01 for iRestNet
Dh ∈ Rn×n, Dv ∈ Rn×n : horizontal and vertical spatial gradient operators
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Network characteristics
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Estimation of regularization parameter

λk = L(λ)
k (xk ) =

σ̂(y)× Softplus(bk)
η(xk ) + Softplus(ck)

• η(xk ) : standard deviation of [(Dhxk )>(Dvxk )>]>

• Estimation of noise level [Ramadhan et al.,2017], σ̂(y) = median(|WHy|)/0.6745
• |WHy | : vector gathering the absolute value of the diagonal coefficients of the first level

Haar wavelet decomposition of the blurred image

→ iRestNet does not require knowledge of noise level

Post-processing Lpp [Zhang et al.,2017]
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Numerical experiments
Dataset

Training set : 200 RGB images from BSD500 + 1000 images from COCO
Validation set : 100 validation images from BSD500
Test sets : 200 test images from BSD500, Flickr30 test set (30 images)

Test configurations

GaussianA : Gaussian kernel with std=1.6, σ = 0.008
GaussianB : Gaussian kernel with std=1.6, σ ∈ [0.01, 0.05]
GaussianC : Gaussian kernel with std=3, σ = 0.04
Motion : motion kernel from [Levin et al.,2009] σ = 0.01
Square : 7× 7 square kernel, σ = 0.01

Training

Loss : Structural SImilarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
L0, . . ., L29 trained individually, Lpp ◦ L39 ◦ · · · ◦ L30 trained end-to-end → low memory
Implemented with Pytorch using a GPU, ∼3-4 days per training

Competitors

VAR : solution to P0 with projected gradient algorithm, (λ, δ) leading to best SSIM
EPLL [Zoran and Weiss, 2011], MLP [Schuler et al.,2013], IRCNN [Zhang et al.,2017]
(require noise level), PDHG [Meinhardt et al., 2017], FCNN [J. Zhang et al., 2017]
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Results

3 Higher average SSIM than competitors
3 Higher SSIM on almost all images

GaussianA GaussianB GaussianC Motion Square

Blurred 0.676 0.526 0.326 0.549 0.544
VAR 0.804 0.723 0.587 0.829 0.756
EPLL [Zoran and Weiss, 2011] 0.800 0.708 0.565 0.839 0.755
MLP [Schuler et al., 2016] 0.821 0.734 0.608 n/a n/a
PDHG [Meinhardt et al., 2017] 0.796 0.716 0.563 n/a n/a
IRCNN [K. Zhang et al., 2017] 0.841 0.768 0.619 0.907 0.834
FCNN [J. Zhang et al., 2017] n/a n/a n/a 0.847 n/a
iRestNet 0.853 0.787 0.641 0.910 0.840

Table – SSIM results on the BSD500 test set.
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3 Short execution time : ∼ 1.4 sec per image
3 Similar performance on a different test set

GaussianA GaussianB GaussianC Motion Square

Blurred 0.723 0.545 0.355 0.590 0.579
VAR 0.857 0.776 0.639 0.869 0.818
EPLL [Zoran and Weiss, 2011] 0.860 0.770 0.616 0.887 0.827
MLP [Schuler et al., 2016] 0.874 0.798 0.668 n/a n/a
PDHG [Meinhardt et al., 2017] 0.853 0.781 0.623 n/a n/a
IRCNN [K. Zhang et al., 2017] 0.885 0.819 0.676 0.930 0.886
FCNN [J. Zhang et al., 2017] n/a n/a n/a 0.890 n/a
iRestNet 0.892 0.833 0.696 0.930 0.886

Table – SSIM results on the Flickr30 test set.
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Visual results

3 Better contrast and more details

Ground-truth Blurred : 0.509 VAR : 0.833 EPLL : 0.839

MLP : 0.860 PDHG : 0.772 IRCNN : 0.840 iRestNet : 0.883

Figure – Visual results and SSIM obtained on one image from the BSD500 test set degraded with GaussianB.
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Visual results

Ground-truth Blurred : 0.344 VAR : 0.622 EPLL : 0.553 IRCNN : 0.685 iRestNet : 0.713
Figure – Visual results and SSIM obtained on one image from the BSD500 test set degraded with Square.

Ground-truth Blurred : 0.576 VAR : 0.844 EPLL : 0.849

IRCNN : 0.906 FCNN : 0.856 iRestNet : 0.909
Figure – Visual results and SSIM obtained on one image from teh Flickr30 test set degraded with Motion.
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Conclusion

Novel architecture based on an unfolded proximal interior point algorithm
Allows to apply hard constraints on the image
Expression and gradient of the proximity operator of the barrier

→ Different application (classification, . . .)
→ When degradation is unkown : blind or semi-blind deconvolution
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Thank you !
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